반응형
/*******************************************************************************************************************
-- Title : [MSPy] sp_execute_external_script를 활용한 Python Script 실행 예제-2
-- Reference : www.sqlshack.com
-- Key word : sp_execute_external_script .csv .json csv json data_load bulk insert json.load
*******************************************************************************************************************/
■ Scripts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | use tempdb; go ------------------------------------------------- -- Creating table ------------------------------------------------- DROP TABLE IF EXISTS dbo.[tbl_loanPrediction] GO CREATE TABLE [dbo].[tbl_loanPrediction] ( Loan_ID varchar(50), gender varchar(50), Married varchar(50), Dependents varchar(50), Education varchar(50), SelfEmployed varchar(50), ApplicationIncome varchar(50), CoapplicantIncome varchar(50), LoanAmount float , Loan_Amount_Term varchar(50), Credit_History varchar(50), Property_Area varchar(50) ); ------------------------------------------------- -- loading csv into table ------------------------------------------------- BULK INSERT [tbl_LoanPrediction] FROM 'D:\sample.csv' WITH ( FIRSTROW = 2, -- field명 때문에 2행부터 적재 FIELDTERMINATOR = ',', ROWTERMINATOR = '\n' ) GO ------------------------------------------------- -- Checking data ------------------------------------------------- SELECT * FROM [tbl_LoanPrediction] GO ------------------------------------------------- -- Querying csv using pandas ------------------------------------------------- EXEC sp_execute_external_script @language = N'Python', @script = N' import pandas as pd import numpy as np df = pd.read_csv("D:\\sample.csv", index_col="Loan_ID") print(df)'; ------------------------------------------------- -- Extraction data using logical conditiion ------------------------------------------------- exec sp_execute_external_script @language = N'Python', @script = N' import pandas as pd import numpy as np df = pd.read_csv("D:\\sample.csv", index_col="Loan_ID") print(df[["Gender","Education"]]) print("-"*30) print(df.loc[(df["Gender"]=="Female") & (df["Education"]=="Not Graduate"), ["Gender","Education"]]) '; ------------------------------------------------- -- Data loading into the Temptable using pandas ------------------------------------------------- DROP TABLE IF EXISTS dbo.#Loan GO SELECT TOP 5 * FROM tbl_LoanPrediction; CREATE TABLE #Loan ( Loan_ID varchar(20) , Gender varchar(10) null , Education varchar(30)null , MaritalStatus char(3) ); INSERT INTO #Loan exec sp_execute_external_script @language = N'Python', @script = N' import pandas as pd import numpy as np df = InputDataSet out_df = df.loc[(df["gender"]=="Female") & (df["Education"]=="Not Graduate") & (df["Married"]=="No"), ["Loan_ID","gender","Education","Married"]]', @input_data_1 = N'SELECT * FROM [tbl_LoanPrediction]', @output_data_1_name = N'out_df'; select * from #Loan; ------------------------------------------------- -- Pivoting ------------------------------------------------- EXEC sp_execute_external_script @language =N'Python', @script=N' import pandas as pd import numpy as np df = pd.read_csv("D:\\sample.csv", index_col="Loan_ID") #-- Determine pivot table Out_df = df.pivot_table(values=["LoanAmount"],index=["Gender","Married","Self_Employed"], aggfunc=np.mean) print(Out_df)', @output_data_1_name = N'Out_df'; ------------------------------------------------- -- Pivoting-2 ------------------------------------------------- DROP TABLE IF EXISTS dbo.#Movies GO CREATE TABLE #Movies (MovieType VARCHAR(20), SalesYear INT, MovieSales int); GO INSERT INTO #Movies VALUES('Comedy', 2014, 11201); INSERT INTO #Movies VALUES('History', 2014, 12939); INSERT INTO #Movies VALUES('Comedy', 2013, 10436); INSERT INTO #Movies VALUES('Comedy', 2013, 9346); INSERT INTO #Movies VALUES('Comedy', 2014, 7214); INSERT INTO #Movies VALUES('Comedy', 2014, 5800); INSERT INTO #Movies VALUES('Comedy', 2013, 8922); INSERT INTO #Movies VALUES('History', 2013, 7462); SELECT * FROM #Movies; SELECT * FROM #Movies PIVOT(SUM(MovieSales) FOR SalesYear IN([2013], [2014]) ) AS PivotSales; exec sp_execute_external_script @language = N'Python', @script=N' import pandas as pd import numpy as np in_df = InputDataSet #Determine pivot table out_df = in_df.pivot_table(values=["MovieSales"], index=["MovieType","SalesYear"], aggfunc=np.sum) print(out_df) ', @input_data_1 = N'SELECT * FROM #Movies', @output_data_1_name = N'out_df'; ------------------------------------------------- -- Extraction data from JSON ------------------------------------------------- EXEC sp_execute_external_script @language =N'Python', @script=N' import os import json script_dir = os.path.dirname("d:\\") file_path = os.path.join(script_dir, "sample.json") print(file_path) print("Name" + "----- "+"Size" + "---- " + "%Free") with open(file_path) as json_file: data = json.load(json_file) for r in data["diskspace"]: if (float(r["freespace"]) > 5.00): print(r["server"] + "-- "+ r["size"] +"-- " +r["percentage"]) '; | cs |
■ Files
반응형